Absolute Chow–künneth Decomposition for Rational Homogeneous Bundles and for Log Homogeneous Varieties

نویسندگان

  • JAYA NN IYER
  • J. N. IYER
چکیده

In this paper, we prove that rational homogeneous bundles and log homogeneous varieties (studied by M. Brion) have an absolute Chow–Künneth decomposition. This strengthens the earlier paper by us on small dimensional varieties with a NEF tangent bundle, and using Hwang-Mok’s results, we get the results for new cases in higher dimension as well, for instance upto dimension four.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Murre’s Conjecture for a Rational Homogeneous Bundle over a Variety

In this paper, we investigate Murre’s conjectures on the structure of rational Chow groups for a rational homogeneous bundle Z → S over a smooth variety. Absolute Chow-Künneth projectors are exhibited for Z whenever S has a Chow–Künneth decomposition.

متن کامل

Relative Chow-Künneth decompositions for conic bundles and Prym varieties

We construct a relative Chow-Künneth decomposition for a conic bundle over a surface such that the middle projector gives the Prym variety of the associated double covering of the discriminant of the conic bundle. This gives a refinement (up to an isogeny) of Beauville’s theorem on the relation between the intermediate Jacobian of the conic bundle and the Prym variety of the double covering.

متن کامل

Chow–künneth Decomposition for Special Varieties

In this paper we investigate Murre’s conjecture on the Chow–Künneth decomposition for two classes of examples. We look at the universal families of smooth curves over spaces which dominate the moduli space Mg, in genus at most 8 and show existence of a Chow–Künneth decomposition. The second class of examples include the representation varieties of a finitely generated group with one relation. T...

متن کامل

Chern Class Formulas for G2 Schubert Loci

We define degeneracy loci for vector bundles with structure group G2, and give formulas for their cohomology (or Chow) classes in terms of the Chern classes of the bundles involved. When the base is a point, such formulas are part of the theory for rational homogeneous spaces developed by Bernstein–Gelfand–Gelfand and Demazure. This has been extended to the setting of general algebraic geometry...

متن کامل

Chow-künneth Decomposition for Varieties with Low Cohomological Level

We show that a smooth projective variety admits a Chow-Künneth decomposition if the cohomology has level at most one except for the middle degree. This can be extended to the relative case in a weak sense if the morphism has only isolated singularities, the base space is 1-dimensional, and the generic fiber satisfies the above condition.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011